Fan Zhang

Assistant Professor - Physics
972-883-3509
PHY1.618
Z Lab
ORCID
Tags: Physics

Professional Preparation

PhD - Physics
The University of Texas at Austin - 2011
BS - Physics
University of Science and Technology of China - 2006

Publications

Acoustic Landau quantization and quantum-Hall-like edge states 2019 - Journal Article
Determining Interaction Enhanced Valley Susceptibility in Spin-Valley-Locked MoS2 2019 - Journal Article
Intrinsic valley Hall transport in atomically thin MoS2 2019 - Journal Article
Majorana Doublets, Flat Bands, and Dirac Nodes in s-Wave Superfluids 2018 - Journal Article
High-Temperature Majorana Corner States 2018 - Journal Article
A missing step is a key step 2018 - Journal Article
Topological negative refraction of surface acoustic waves in a Weyl phononic crystal 2018 - Journal Article
Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings 2018 - Journal Article
π and 4π Josephson Effects Mediated by a Dirac Semimetal 2018 - Journal Article
Valley Topological Phases in Bilayer Sonic Crystals 2018 - Journal Article

News Articles

Creation of Weak Materials Offers Strong Possibilities for Electronics
New fundamental research by UT Dallas physicists may accelerate the drive toward more advanced electronics and more powerful computers. 
The scientists are investigating materials called topological insulators, whose surface electrical properties are essentially the opposite of the properties inside. 

“These materials are made of the same thing throughout, from the interior to the exterior,” said Dr. Fan Zhang, assistant professor of physics at UT Dallas. “But, the interior does not conduct electrons — it’s an insulator — while the electrons on the surface are free to move around. The surface is therefore a conductor, like a metal, but it is in fact more robust than a metal.” 
Physicists Decipher Electronic Properties of Materials in Work That May Change Transistors
UT Dallas physicists have published new findings examining the electrical properties of materials that could be harnessed for next-generation transistors and electronics.
Dr. Fan Zhang
, assistant professor of physics, and senior physics student Armin Khamoshi recently published their research on transition metal dichalcogenides, or TMDs, in the journal Nature Communications. Zhang is a co-corresponding author, and Khamoshi is a co-lead author of the paper, which also includes collaborating scientists at Hong Kong University of Science and Technology.
University Physicists Demonstrate Negative Refraction Without Reflection
Physicists at The University of Texas at Dallas and Wuhan University have created an artificial structure that does not reflect sound and bends it in a way that does not occur in nature.
The results could inspire new directions in wave manipulation, such as acoustic cloaking technologies, and advances in photonics and electronics, said Dr. Fan Zhang, assistant professor of physics at UT Dallas and one of the authors of the study published in Nature.