
When Dr. Ronald Smaldone joined the UT Dallas faculty last fall, he brought with him an ace in the hole – research expertise centered on novel, porous materials that have wide-ranging potential applications, from batteries to drug delivery to energy storage. The materials Smaldone is developing are nanoporous polymers. In bulk they appear crystalline or powder-like, but a microscope reveals tiny openings where small molecules can enter and become trapped and released, just as water molecules get trapped in a sponge. The polymers may be full of holes, Smaldone said, but that chemically engineered nanoporosity is a very useful property. Such materials have extremely high surface areas, up to 1,200 square meters in a teaspoonful. All those tiny nooks and crannies can store catalytic chemicals, form the basis of a new generation of batteries, or store energy-rich gasses such as hydrogen and methane.