Research Areas
Babak Fahimi
Dr. Fahimi is a research leader in the adjustable speed motor drives, power electronic based systems, and electrified transportation research area. He has over 20 years of industrial and academic experience in conceptualization, development, and analysis of various electromechanical actuators, energy harvesters, and sensors. He has introduced several key technologies that are in use or being pursued by industries. These include:
-
Multi-port power electronic interface (MPEI) for effective harvest, storage, and management of energy within a hybrid micro grid.
-
Double stator Switched Reluctance Motor Technology for electric propulsion of electrified transportation.
-
Position sensorless control of SRM and PMSM drives.
-
Fault tolerant operation of adjustable speed PMSM drives.
-
Elimination of acoustic noise and vibration using multi-physics modeling techniques.
-
Optimal magnetic design of electromechanical energy converters.
-
Optimal design of power electronic converters for micro harveters of energy harvesters.
Dr. Fahimi's research can be found in the form of over 190 peer reviewed journal and conference articles, 4 issued patents (7 more pending), several book chapters and technical reports.
He has supervised 8 PhD and 14 M.S. thesis to completion. His former students are all industrial and academic leaders (three assistant professors).
Publications
D. Torregrossa, D. Paire, F. Peyraut, B.Fahimi, and A. Miraoui, "Active Mitigation of Electromagnetic Vibrations radiated by PMSM in Fractional Horse Power Drive by Optimal Choice of the Carrier frequency", accepted for publication in IEEE Trans. Ind. Appl. forthcoming - Publication
A. Khoobroo and B. Fahimi, "Magnetic Flux Estimation in Permanent Magnet Synchronous Machine Using Field Reconstruction Method", accepted for publication in IEEE Trans. Energy Convers. forthcoming - Publication
D. Torregrossa, F. Peyraut, B. Fahimi, J. M-Boua, and A. Miraoui, "Multi-Physics Finite Element Modeling for Vibration and Acoustic Analysis of Permanent Magnet Synchronous Machine", accepted for publication in IEEE Trans. Energy Convers. forthcoming - Publication
D. Torregrossa, B. Fahimi, F. Peyraut, and A. Miraoui, "Fast Computation of Electromagnetic Vibrations in Electrical Machines via Field Reconstruction Method and Knowledge of Mechanical Impulse Response", accepted for publication in IEEE Trans. Ind. Appl. forthcoming - Publication
A. Khoobroo, D. Torregrossa, and B. Fahimi, "Prediction of Acoustic Noise and Torque Pulsation in PM Synchronous Machines with Rotor Eccentricity and Partial Demagnetization using Field Reconstruction Method", accepted for publication in IEEE Trans. Ind. Electron.. forthcoming - Publication
A. H. Ranjbar, R. Noboa, and B. Fahimi, "Dynamic modeling and stability analysis of magnetically levitated systems, IEEE Transportation Electrification Conference (ITEC2012), Dearborn, USA, June 18-20, 2012. 2012 - Publication
Chenjie Lin, Wei Wang and B. Fahimi , "Optimal design of double stator switched reluctance machine (DSSRM)," Industrial Electronics (ISIE), 2012 IEEE International Symposium on, pp.719-724, 28-31 May 2012. 2012 - Publication
C. Lin, W, Wang. M. McDonough, B. Fahim, "An Extended Field Reconstruction Method for Modelling of Switched Reluctance Machines", IEEE Trans on Magnetics,Volume: 48 ,Issue:2,pp:1051 - 1054, Feb. 2012. 2012 - Publication
Chenjie Lin and B. Fahimi , "Optimization of commutation angles in SRM drives using FRM," Transportation Electrification Conference and Expo (ITEC), 2012 IEEE, pp.1-6, 18-20 June 2012. 2012 - Publication
A. H. Ranjbar, R. Noboa, and B. Fahimi, "Estimation of airgap length in magnetically levitated systems, accepted for publication in IEEE Transactions on Industry Applications, February 2012. 2012 - Publication
Appointments
Professor
University of Texas at Dallas [2010–Present]
Associate Professor
University Texas at Arlington [2008–2010]
Assistant Professor
University of Texas at Arlington [2004–2008]
Assistant Professor
University of Missouri-Rolla [2002–2004]
Research scientist
Electro Standards Laboratories Inc. [2000–2002]
Post Doctoral research associate
Texas A&M University [1999–2000]
Research Assistant
Texas A&M University [1995–1999]
Research Assistant
RWTH Aachen [1993–1995]
News Articles

A UT Dallas researcher has developed a key element in the renewable energy equation: a prototype electronic interface that routes power from renewable sources to the power grid and electrical storage facilities. “Our Multi-Port Power Electronic Interface guarantees optimal energy harvesting from solar panels and wind turbines,” said Dr. Babak Fahimi, a professor of electrical engineering in the University’s Erik Jonsson School of Engineering and Computer Science. “This converter utilizes an adaptive controller to optimally increase efficiency and reliability for each operational condition while performing energy management algorithms to ensure the best performance.” Five years in development, the converter would be perfect for use by small to medium-size businesses, large residential buildings and shopping centers that decide to make an investment in renewable energy, Fahimi said.

Renewable energy leader Dr. Babak Fahimi, a professor of electrical engineering in UT Dallas'
Erik Jonsson School of Engineering and Computer Science, has been elected a fellow of the
Institute of Electrical and Electronics Engineers (IEEE), the world's largest professional association for the advancement of technology.
Fahimi has been teaching and conducting research in the power electronics area for almost 20 years.
“This is a unique honor for me and our power group,” he said. “I am especially honored that IEEE has acknowledged my contributions at this stage of my career.”

A team from the
Renewable Energy and Vehicular Technology Laboratory(REVT) at UT Dallas was one of a few research groups selected for advanced participation in a Department of Energy conference aimed at presenting the next generation of energy technologies.
The DOE’s
Advanced Research Projects Agency-Energy (ARPA-E) program hosts an annual summit in Washington, D.C., for researchers, entrepreneurs, investors, corporate executives and government officials to share transformational research funded through the program.

University of Texas at Dallas researchers have developed a generator prototype that uses liquid metal to convert waste heat from sources such as electric cars or data centers into clean electricity.
The researchers detailed the project in the October print edition of
Sustainable Energy Technologies and Assessments.
“Heat is an abundant renewable energy source,” said
Dr. Babak Fahimi, Distinguished Chair in Engineering and professor of electrical engineering in the
Erik Jonsson School of Engineering and Computer Science. “In data centers, for example, we spend a lot of time getting rid of the heat by using chillers and air conditioning. Our work focuses on recycling that heat back to electricity.”